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ABSTRACT

Recent technological developments have fostered a need for the de-
velopment and utilization of machines which contain enough intelligence
to perform autonomous tasks in uncertain environments. Concepts
drawn from the fields of Artificial Intelligence, Operations Research and
Control Theory have been combined to form a unified theory which
analytically describes the design and structure consisting of Organiza-
tion, Coordination and Execution levels forms the architecture of the
Machine under the Principle of Increasing Precision with Decreasing In-
telligence from hierarchically intelligent control. This system has been
formulated as a probabilistic model, where uncertainty and imprecision
can be expressed in terms of entropies. The optimal strategy for de-
cision planning and task execution by the Intelligent Machine can be
found by minimizing the total entropy in the system.

This paper focuses on the design of the Organization Level of the
Intelligent Machine as a Boltzmann machine, as described in current
neural network literature. Since this level is responsible for planning the
actions of the Machine. the problem at this tier is formulated as the
construction of the right sequence of tasks or events which minimizes
the entropy for the desired action. A search algorithm is presented
which examines the weights and connections of the events in order to
efficiently find the desired action sequence. ’

1. INTRODUCTION

In our present technological society. there is a major need to build
machines that would execute intelligent tasks operating in uncertain en-
vironments with minimum interaction with a human operator. Although
sume designers have built smart robots, utilizing heuristic ideas. there
is no systematic approach to design such machines in an engineering
manner.

Recently. cross—disciplinary research from the fields of computers.
systems. Al and information theory has served to set the foundations
of the emerging area of the Design of Intelligent Machines (Saridis.
Stephanou 1977).

Since 1977 Saridis has been developing a novel approach, defined
as Hierarchical Intelligent Control. designed to organize. coordinate and
execute anthropomorphic tasks by a machine with minimum interaction
with a human operator. This approach utilizes analytical {probabilistic)
models to describe and control the various fuactions of the Intelligent
Machine structured by the intuitively defined principie of Increasing Pre-
cision with Decreasing Intelligence (IPDI) (Saridis 1979).

This principle. even though resembles the managerial structure of
organizational systems (Levis 1988). has been derived on an analytic
basis by Saridis (1988). The impact of this work is in the engineering
design of intelligent robots. since it provides analytic techniques for
universal production (blueprints) of such machines.

The purpose of the paper is to derive analytically a Boltzmann ma-
chine suitable for optimal connection of nodes in a neural net (Fahiman.
Hinton, Sejnowski, 1985). Then this machine will serve to search for
the optimal design of the Organization level of an intelligent Machine.

In order to accomplish this. some mathematical theory of the in-
telligent machines will be first outlined. Then some definitions of the
variables associated with the principle. like machine intelligence, ma-
chine knowledge. and precision will be made. A list of such definitions
is given in the section that follows. (Saridis, Valavanis 1988). Then a
procedure to establish the Boltzmann machine on an analytic basis will
be presented and illustrated by an example in designing the organization
level of an Intelligent Machine.

2. THE MATHEMATICAL THEORY OF INTELLIGENT CON-
TROLS

In order to design intelligent machines that require for their op-
eration control system with intelligent functions such as simultaneous
utilization of a memory. learning, or multilevel decision making in re-
sponse to “fuzzy” or qualitative commands. Intelligent Controls have
been developed by Saridis (1977, 1983). They utilize the results of
cognitive systems research effectively with various mathematical pro-
gramming control techniques (Birk & Kelley, 1981).

The theory of Intelligent Control systems. proposed by Saridis
(1979) combines the powerful high—level decision making of the digital
computer with advanced mathematical modeling and synthesis tech-
niques of system theory with linguistic methods of dealing with impre-
cise or incomplete information. This produces a unified approach suit-
able for the engineering needs of the future. The theory may be thought
ol as the result of the intersection of the three major disciplines of
Artificial Intclligence, Qperations Research and Control Theory. This
research is aimed to establish Intelligent Controls as an engineering
discipline. and it plays a central role in the design of Intelligent Au-
tonomous Systems.

Intelligent control can be considered as a fusion between the math-
ematical and linguistic methods and algorithms applied to systems and
processes. In order to solve the modern technological problems that
require control systems with intelligent functions such as simultaneous
utilization of a memory, learning. or multilevel decision making in re-
sponse to “fuzzy™ or qualitative commands. Intelligent Control is the
process of implementation of an Intelligent Machine and would require
a combination of “machine intelligent functions™ for task organization
purposes with system theoretic methods for their execution.

The control intelligence is hierarchically distributed accord-
ing to the Principle of lncreasing Pregision with Decreaging Intelligence
(IPD1). evident in all hierarchical management systems. They are com-
posed of three basic levels of controls even though each level may con-
tain more than one layer of tree-structured functions (Figure 1):



1. The organization fevel.
2. The coordination level.
" 3. The execution level.

The Qrganization Leve! is intended to perform such operations as

planning and high level decision making from long term memories. It
may require high level information processing such as the knowledge

based systems encountered in Artificial Intelligence. These require large
quantities of knowledge processing but require little or no precision.

The functions involved in the upper levels of an intelligent ma-
chine are imitating functions of human behavior and may be treated
as elements of knowledge-based systems. Actually, the activities of
planning. decision making. learning. data storage and retrieval. task
coordination. etc. may be thought of as knowledge handling and man-
agement. Therefore. the flow of knowledge in an intelligent machine
may be considered as the key variable of such a system.

Knowledge flow in an intelligent machine’s organization level rep-
resents respectively:

1. Data Handling and Management.

2. Planning and Decision performed by the central processing
units.

3. Sensing and Data Acquisition obtained through peripheral de-
vices.

4, Formal Languages which define the software.

Subjective probabilistic models or fuzzy sets are assigned to the
individual functions. Thus, their gntropies may be evaluated for every
task executed. This provides an analytical measure of the total activity.

Artificial Intelligence methods also applicable for the processing of
knowledge and knowledge rates of the organization level of an intelligent
machine have been developed by Meystel (1985) and his colleagues.

The Coordination Level is an intermediate structure serving as an
interface between the organization and execution level.

It is involved with coordination, decision making and learning on
a short term memory. eg.. a buffer. It may utilize linguistic de—
cision schemata with learning capabilities defined in Saridis and Graham
(1984), and assign subjective probabilities for each action. The respec-
tive entropies may be obtained directly from these subjective probabil-
ities.

The Execytion Level executes the appropriate control functions.
lts performance measure can also be expressed as an entropy, thus
unifying the functions of an “intelligent machine™.

Optimal control theory utilizes a non-negative functional of the
states of a system in the states space. and a specific control from the set
of all admissible controls.to define the performance measure for some
initial conditions (z(t),t). representing a generalized energy function.
Minimization of the energy functional yields the desired control law for
the system.

For an appropriate density function p{z,u(z,t),t) satisfying
Jaynes’ Maximum entropy principle (1957). it was shown by Saridis
(1988) that the entropy for a particular control action u(z,¢).

H(u) = -/0 p(z,u(z,¢), t)inp(z, u(t), t)dz

is equivalent to the expected energy or cost functional of the system.
Therefore. minimization of the entropy H(u) yields the optimal control
law of the systems.

This statement establishes equivalent measures between informa-
tion theoretic and optimal control problems and unifies both information
and feedback control theories with a common measure of performance.
Entropy satisfies the additive property, and any system composed of
a combination of such subsystems can be optimized by minimizing its
total entropy. Information theoretic methods based on entropy may
apply (Conant 1576).

Since all levels of a hierarchical intelligent control can be measured
by entropies and their rates. then the optimal operation of an “intelli-
gent machine™ can be obtained through the solution of mathematical
programming problems.

The various aspects of the theory of hierarchically intelligent con-

trols may be summarized as follows:

The theory of intelligent machines may be postulated as the

math { probl f ing the right en ision

n ntrols for t r r rdin ringiple of

in ing precision with asing intelligen nstrain h
it minimizes its total entro

The above analytic formulation of the “intelligent machine prob-
lem™ as a hierarchically intelligent control problem is based on the yse
of entropy as a measure of performance at all the levels of the hierar-
chy. It has many advantages becausa of the treeke structure of the

decision making process. and brings together functions that belong to
a variety of disciplines.

3. KNOWLEDGE FLOW AND THE PRINCIPLE OF IPDI

The concept of entropy used in this paper may be generalized if one
introduces theory of evidence for the cases that Intelligent Machines are
endowed with judgment. a very human property.

The general concepts of Intelligent Control Systems are the funda-
mental notions of Machine Intelligence. Machine Knowledge. its Rate
and Precision. The following definitions are useful in order to derive
the principle of IPDI.

Def. 1 Machine Knowledge is defined to be the
structured information acquired and applied to remove
ignorance or uncertainty about a specific task pertaining
to the Inteltigent Machine.

Knowledge is a cumulative quantity accrued by the machine and cannot
be used as a variable to execute a task. Instead, the Rate of Machine
Knowledge is a suitable variable.

Def, 2 Rate of Machine Knawledge is the flow of
knowledge through an Intelligent Machine.

Inteiligence is defined by the American Heritage Dictionary of the
English Language (1969) as: |ntelligence is the capacity to acquire and
apply knowledge.

In terms of Machine Intelligence, this definition may be modified
to yield:

Ref. 3 Machine Intelligence (M) is the variable

(source) which operates on a data-base (DB) of events

to produce flow of knowledge (RK)

One may directly apply the Law of Partition of Information Rates
of Conant (1976) to analyze the functions of intelligence within the
activities of an Intelligent Control System.

On the other hand. one may define Precision as follows:

Def. 4 Imprecision is the uncertainty of execution
of the various tasks of the Intelligent Machine.
and
Def. 5 Precision is the complement of Imprecision,
and represents the complexity of a process.

Analytically. the above relations may be summarized as follows:
Knowledge (K) representing a type of information may be repre-
sented as

K = —a—-Inp(K) = (Energy) (1)

where p(K) is the probability density of Knowledge.

From equation (1) the probability density function p(K) satisfies
the following expression in agreement with Jaynes' principle of Maxi-
mum Entropy (1957):

p(K)y=e*"X;, a= ln/ e~ Xdz (2)
x

The Rate of Knowledge R which is the main variable of an intelligent
machine with discrete states is

R= % = (Power)

It was intuitively thought (Saridis 1983). that the Rate of Knowl-



edge must satisfy the following relation which may be thought

of expressing the principle of ing Precision with Decreasin
Intelligence
(MI):(DB) — (R) (3)

A special case with obvious interpretation is, when R is fixed. machine
intelligence is largest for a smaller data base e.g. complexity of the
process. This is in agreement with Vamos' theory of Metalanguages
(1986).

It is interesting to notice the resemblance of this entropy formula-
tion of the Intelligent Control Problem with the e—entropy formulation
of the metric theory of complexity originated by Kolomogorov (1956)
and applied to system theory by Zames (1979). Both methods im-
ply that an increase in Knowledge (feedback) reduces the amount of
entropy (e—entropy) which measures the uncertainty involved with the
system.

An analytic formulation of the above principle has been derived
from simple probabilistic relation among the Rate of Knowledge. Ma-
chine Intelligence and the Data Base of Knowledge. The entropies of
the various functions come naturally into the picture as a measure of
their activities.

4. THE DESIGN OF THE ORGANIZATION LEVEL OF AN IN-
TELLIGENT MACHINE AS A BOLTZMANN MACHINE

In the current literature of parallel architectures for Machine Intel-
ligence. the Boltzmann machine represents a powerful. neural netwark
based architecture that allows efficient searches to optimally obtain
the cambination of certain hypotheses of input data and constraints
(Fahlman, Hinton. Sejnowski 1985).

The Boltzmann architecture may be interpreted as the machine
that searches for the optimal interconnection of several nodes (neu-
rons) representing different primitive events in order to produce a string
defining an optimal task. Such a device may prove extremely useful for
the design of the Organization Level of an Intelligent Machine. (Saridis.
Valavanis 1988). (Figure 2)

We associate the state of each node with a binary random variable
z; = {0,1}. with a priori probabilities p(z; = 1) = p; , p(z; = 0) =
1 - pi. where 1 represents the firing of neuron 1. and 0 indicates neuron
i idle. The state vector of the network. X = {z;,z,,...,7,,... yZn}
is an ordered set of 0's and 1's describing the state of the machine
in terms of firing/idle nodes, for an n node machine. The neurons of
the machine can be visible. or hidden (Hinton. Sejnowksi 1986). It
is possible to extract the string of primitive events representing the
optimal task by examining the state vector of the visible nodes in the
network in steady state response to a given input.

5. ENTROPY AS A MEASURE OF UNCERTAINTY

Entropy is used as a measure of uncertainty in the intelligent ma-
chine. The entropy manifests itself in the interaction and interconnec-
tion of nodes in the network. We can define the energy of flow of
knowledge from node j to 1 by:

1
R = gwiziz; (1)

where w;; = 0. which is analogous to Hopfield's neurological model
(Hopfield 1982).

The Probability of Knowledge flow from node 5 to 1 is:
PRy) = e~ dwumms  from (2) (5)

where a; 2 O is the probability normalizing factor.
The Entropy of Knowledge Flow from node j to 1 is:

H(Ry;) = —p(Rij)in{p(R:;)} (6)
or:
H(Ri:') = (a.- + %wi,‘z.’:j)e"’"‘}"’u‘d;‘ (7)
If z; or z; = 0:
H(R;) = aje™™ (8)

which can be called the Threshold Node Entropy of node

fz;and z; = 1:
H(Ry) = (o + )=o) ©)

Similarly, the Entropy of the Flow of Knowledge into node i is:
H(R) = (ai + % Z w.-,~=.'z,-) (e"'“z, "":’i’;) (10)
E
E(R‘) = (a" + Zl,' Z Wiy T Ty (e"" H g'*"‘i’l’: (11)
i i

H(R) = (a.- +3 &-,) (=) (IDse2) (12)

The Entropy of Flow of Knowledge in the Intelligent Machine is:

HR)= [Y(a+3 3 w.-,»zaz,-)] II [= I "] (12)

With the uncertainty of the network measured. the reduction of
the Entropy of Knowledge Flow must be examined. Each node ¢ has
a Threshold Node Entropy associated with it. as shown in (8). This
Threshold Node Entropy can also be found by setting z; = 0 for ali
nodes 5 (5 # 1) in (11). The Threshoid Node Entropy is the entropy
of a node when no knowledge flows into the node. It is necessary
to assert some nodes j;,..., 7 which connect to node § such that the
Entropy of the Flow of Knowledge into node 1 is less than the Threshold
Node Entropy of 1, in order to reduce the entropy in the machine. This
corresponds to the reduction of uncertainty in the machine through
knowledge acquisition.

Form (8) and (9) we can show that the Entropy of Knowledge Flow
from node j to node ¢ will be less than the Threshold Node Entropy of
node ¢ under the following condition: .

e 1 a1
aie” % > (a.-+ iw.',-) (e - Ew.-,')
. L) (e dee
a; > (a.+ 2w.,) (e )
du;;

o > -—3—‘*_“ — (14)

Then:

So if z;,z; = 1, both nodes will be asserted and the Entropy Flow from
Node 5 to node 1 will be less than the Threshold Node Entropy of ¢
when (14) holds. For example. given:

1w
wi; =08 , then —T?Ll=o.813
e —

So if a; > 0.813. the local entropy will be reduced by asserting z,,z;.

Similarly, we can consider the total Entropy of the Flow of Knowl-
edge into node i from all other nodes. From (11) we can derive condi-
tions such that the assertion of nodes connectad to node § will reduce
the Entropy at node s from its Threshold Node Entropy:

H(R) = (ae + % ZM’;‘Z{%‘) e H e~ twimz
E) 2

Assuming z; = 1:
Then
T wz,
«> Almn s
i€
In similar ways. the Threshold Net Entropy can be determined. and
Net Entropy reduction criteria developed from (13).
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6. SEARCH TECHNIQUES FOR THE INTELLIGENT MA-
CHINE

Two random search techniques are compared here which may be
used to find the minimum entropy in the Organization Level of an intei-
ligent machine. By examining the active visible neurons in the minimum
entropy state of the network, one can determine the sequence of primi-
tive events which produce a string defining an optimal task for an intei-
ligent machine. The techniques presented here allow escape from local
entropy minima. which lead to incorrect task decisions. by randomly
selecting states while searching for the glabal entropy minimum.

6.1 Simulated Annealing

One random search technique commonly used to find the global
minimum cost in a Boltzmann Machine is Simulated Annealing. This
technique simulates the annealing process of metal by probabilistically
allowing uphill steps in a state—dependent cost function while finding the
global cost minimum. or ground state. The algorithm allows control of
the search randomness by a user specified parameter. T. In true metal
annealing, this cost function is the Energy of the system. E. and T is
the annealing temperature (Kirkpatrick et al. 1983). This method can
easily be adapted for finding the minimum entropy of the Organization
Level of an intelligent machine.

Given is a small random change in the system state X; =
{z1,23,...,2,} to X; and the resulting entropy change. AH. if
AH < 0. the change is accepted. I AH > 0, the probability the
new state is accepted is:

P(Xisr = X]) = e~ 4 H/KaT (16)
where K is the Boltzmann Constant and T is a user set parameter. By
reducing T along a schedule. called the annealing schedule, the system
should settle into a near—ground state as T' approaches 0.

Another method for simulated annealing is discussed in (Hinton,
Sejnowski 1986). Using this method., if the entropy change between X;
and X7 is AH. then regardless of the previous state, accept state X!
with probability:

1

P Xivs = X)) = =z

(1n
Since an intelligent machine consists of a set of binary states, it should
be noted that in both of the above methods. X! is hamming distance
1 from X; (Kam et al. 1985).

The process of simulated annealing escapes local minima through
its probabilistic random search. and probabilistically convergences to
the giobal cost minimum. Under certain conditions (Geman. Geman
1984). The next technique, Expanding Subinterval Random Search,
probabilistically guarantees convergence within a § neighborhood to
the global minimum of a specified cost function.

6.2 Expanding Subinterval Random Search

A second technique for finding the global minimum value for a cost
function for a dynamic system is Expanding Subinterval Random Search
as described in (Saridis 1976). Using entropy as the cost function and
given a state X;. one may define the following random search algorithm
for an appropriately selected u.

X. _{x; if H(X!) - H(X) <2
HLTAX O H(X!) - H{X) > 2

where H(Y') is the entropy induced by state Y = (y1,y2,...,ya) and

X{ is a randomly selected state vector generated from a prespecified

independent and identically distributed density function. defined by (5).
It is shown that:

(18)

lim Prob [H(X,)- Hy, <8]=1 (19)
n~—00
where H7, is the global minimum entropy of the network. The exis-
tence of H . is proven in the cited work.

This method can be used on-line to find the global minimum en-
tropy in the Organization Level of an intelligent machine.

7. EXPERIMENTAL RESULTS

7.1 Simulation of Search Techniques

A net was created which recognized strings of 15 bit binary num.
bers. The net was formulated using the standard Energy methods found
in (Hinton, Sejnowski 1986). Energy was used instead of Entropy in
these simulations for two reasons. First, to compare the results of this
simulation to the results of simulations by other researchers. a standard
measure had to be used. Second, the method for creating regions of
attraction in an Entropy based net is still being investigated.

The net had three minima. corresponding to states
(100101000100010, 011101010010011, 000111000000100). The re-
spective Energy values for these three states were (0.5. 0.45. 0.2).
Each simulation technique attempted to find the global Energy mini-
mum of the net, which was 0.2. Three cases were studied which varied
the depth and narrowness of the Energy well for the global minimum
state.

Simulated Annealing was performed using the acceptance criteria
in (17). The system was cooled in accordance with:

Ti(t) _ 1
To  log(107¢)

where T} (t) = temperature at time ¢
To = initial temperature.

The net state changed in Hamming distance 1 increments.

Expanding Subinterval Random Search (Saridis 1976) was
slightly modified to reinforce the probabilistic selection of node states
which reduced the Energy in the net. The probability of a node being
active as initially 0.5. When the Energy was reduced during search, the
probability of the node being reactivated became

P(zi =1)= P(z; =1) + [1.0 -~ P(z; = 1)} s 0.1
if the node was active. or
Plz;=1)=P(z; =1) = P(z; = 1) « 0.1

if the node was inactive.

Figures 3-8 present typical simulation results. In the first exper-
iment, the Energy well was small and wide compared to later experi-
ments. The second experiment approximately doubles the well depth
and narrowness, and the third experiment approximately triples the
original values.

As one can see from the data. Simulated Annealing (SA) found
the global minimum Energy in the first experiment in approximately
an order of magnitude interactions faster than Expanding Subinterval
Random Search (ESRS). In the second experiment. ESRS converged
to the global minimum in an order of magnitude iterations quicker than
SA. In the last experiment. SA did not converge to the global minimum.
Also, it is shown that SA did not settle to the minimum Energy in any
of the experiments, while ESRS settled in every trial.

This experiment indicates that Simulated Annealing quickly finds
the global minimum if this value does not reside within a deep Energy
well. Since SA searches locaily for lower Energy states by changing
one node value at a time. it may not find a lower value when the search
must significantly climb before the minimum can be seen. Expanding
Subinterval Random Search will converge to the global Energy mini-
mum regardless of the depth and narrowness of the Energy well, but
converges slower than SA when this topology does not hold.

8. CONCLUSIONS

A mathematical theory for intelligent machines was proposed and
traced back to its origins. The methodology was developed to formu-
late the “intelligent machine™. of which an intelligent robot system is a
typical example. as a mathematical programming prablem as using the
aggregated entropy of the system as its performance measure. The lev-
els of the machine structured according to the Principle of Increasing
Precision with Decreasing Intelligence can adapt performance mea-
sures easily expressed as entropies. This work establishes an analytic
formulation of the Principle. provides entropy measures for the account
of the underlying activities. and integrates it with the main theory of



“Intelligent Machines™. Optimal solutions of the problem of the “intel-
ligent machine” can be obtained by minimizing the overall entropy of
the system.

This formulation was proven to be applicable to the derivation and
design of parallel architectures for Machine Intelligence. The Boltzmann
machine was analytically derived from the definitions of knowliedge flow
and Jaynes’ principle of maximum entropy. An analytic formulation
was given to reduce the entropy due to knowledge flow between active
nodes. Two techniques, Simulated Annealing and Expanding Subin-
terval Random Search. were described. These techniques are used to
find the global minimum entropy of a Boltzmann Machine. Simulations
using these search techniques were conducted using Energy as a cost
function, and results indicate that ESRS converges faster than SA to a
global minimum if the topology contains narrow and deep cost wells.
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